@class REExportedTable; @interface REBayesianMLModel : REMLModel { struct BayesianModel { struct _opaque_pthread_rwlock_t { long long __sig; char __opaque[192]; } m_rwlock; struct unordered_map>> { struct __hash_table, std::__unordered_map_hasher, BayesianModel::SuperHasher, BayesianModel::SuperHasher>, std::__unordered_map_equal, BayesianModel::SuperHasher, BayesianModel::SuperHasher>, std::allocator>> { struct unique_ptr, void *> *> *[], std::__bucket_list_deallocator, void *> *> *>>> { struct __compressed_pair, void *> *> **, std::__bucket_list_deallocator, void *> *> *>>> { void **__value_; struct __bucket_list_deallocator, void *> *> *>> { struct __compressed_pair, void *> *> *>> { unsigned long long __value_; } __data_; } __value_; } __ptr_; } __bucket_list_; struct __compressed_pair, void *> *>, std::allocator, void *>>> { struct __hash_node_base, void *> *> { void *__next_; } __value_; } __p1_; struct __compressed_pair, BayesianModel::SuperHasher, BayesianModel::SuperHasher>> { unsigned long long __value_; } __p2_; struct __compressed_pair, BayesianModel::SuperHasher, BayesianModel::SuperHasher>> { float __value_; } __p3_; } __table_; } m_features; int m_nFeaturesCount; unsigned long long m_nTotalTrue; unsigned long long m_nTotalExamples; double m_dSumPredictions; double m_dLogScore; double m_dNormalizedLogScore; double m_dEpsilon; int m_nModelVersion; unsigned long long m_nCalibrationCurveTrue[10]; unsigned long long m_nCalibrationCurveCount[10]; unsigned long long m_maxFeatureCoordinates; unsigned long long m_nNumberOfTraining; struct Gaussian { double m_dPrecision; double m_dPredicionMean; } m_empty; } _model; unsigned long long _numberOfFeatures; } @property (readonly, nonatomic) REExportedTable *content; + (unsigned long long)maxFeatureCount; + (unsigned long long)featureBitWidth; - (id).cxx_construct; - (void).cxx_destruct; - (void)_clearModel; - (float)_getAveragePrediction; - (float)_getNormalizedEntropy; - (long long)_getNumberOfCoordinates; - (unsigned long long)_getTotalExampleCount; - (unsigned long long)_getTotalPositiveCount; - (void)_loadFeatureVector:(void *)a0 fromFeatureMap:(id)a1; - (BOOL)_loadModelFromURL:(id)a0 error:(id *)a1; - (unsigned long long)_maxFeatureCoordinates; - (id)_predictWithFeatures:(id)a0; - (BOOL)_saveDebugModelToURL:(id)a0 error:(id *)a1; - (BOOL)_saveModelToURL:(id)a0 error:(id *)a1; - (BOOL)_saveModelToURL:(id)a0 includeDebugData:(BOOL)a1 error:(id *)a2; - (void)_trainWithFeatures:(id)a0 positiveEvent:(id)a1; - (id)initWithFeatureSet:(id)a0 priorMean:(float)a1 modelVarianceEpsilon:(float)a2; - (void)logCoreAnalyticsMetrics; @end