@class NSString, NSArray, MLPOptimizer, MPSVector, MPSMatrixCopy, MPSMatrixSum, MPSMatrixNeuron, MPSMatrix; @interface MLPEmbeddingLayer : MLPLayer { struct vector>, std::allocator>>> { void *__begin_; void *__end_; struct __compressed_pair> *, std::allocator>>> { void *__value_; } __end_cap_; } wordIDRepetitions; struct vector> { float *__begin_; float *__end_; struct __compressed_pair> { float *__value_; } __end_cap_; } weightsInitial; } @property unsigned long long vocabSize; @property unsigned long long embeddingDimension; @property (retain) MPSMatrixCopy *matrixCopy; @property const void *initialWeights; @property (retain) MPSMatrix *weights; @property (retain) MPSMatrix *weightGradients; @property (retain) MLPOptimizer *optimizer; @property (retain) MPSMatrix *weights_mom; @property (retain) MPSMatrix *weights_vel; @property (retain) MPSMatrixNeuron *zeroFilter; @property (retain) MPSMatrixSum *sumFilter; @property (retain) MPSMatrixCopy *matrixCopyFilter; @property (retain) MPSVector *offsetVector; @property (readonly) NSArray *mlpOptimizers; @property (readonly) unsigned long long hash; @property (readonly) Class superclass; @property (readonly, copy) NSString *description; @property (readonly, copy) NSString *debugDescription; - (id).cxx_construct; - (void).cxx_destruct; - (void)createKernel; - (id)forward:(id)a0 input:(id)a1 labels:(id)a2 runInference:(BOOL)a3; - (id)generateNode:(id)a0 model:(id)a1 weightIter:(unsigned long long *)a2; - (id)initWithName:(id)a0 inputLength:(unsigned long long)a1 vocabSize:(unsigned long long)a2 embeddingDimension:(unsigned long long)a3; - (id)initWithName:(id)a0 parameters:(struct { long long x0; long long x1; long long x2; long long x3; long long x4; long long x5; long long x6; long long x7[8]; unsigned long long x8; int x9[8][4]; int x10[4][4]; int x11[16]; float x12[16]; void *x13[16]; void *x14[16]; } *)a1; - (id)seqBackward:(id)a0 dataBatch:(id)a1 inputGradient:(id)a2; - (void)seqBackward:(id)a0 inputGradientMatrix:(id)a1 matrixIter:(unsigned long long)a2; - (id)seqForward:(id)a0 input:(id)a1 dataBatch:(id)a2 runInference:(BOOL)a3; @end